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1. Introduction

In addition to a substantial movie and TV industry, numerous recent books, both fiction and non-fiction, have 
discussed the end of  man. To some extent, such cultural formations encode growing unease with the foundations 
of  supposedly victorious Western society after the Cold War, reflecting the fragility of  knowledge in the age of  
“fake news” on the one hand and increasing global uncertainty on the other. Nor is it an accident that such unease 
manifests in the form of  engagements with the end of  man. Beyond worrying about knowledge and its certainty, 
the end of  man marks a contemporary formation of  knowledge in its own right. Yet what is sorely missing is an 
appraisal of  what empirical figurations may inhabit the space opened by the end of  man, particularly in light of  the 
unease it reflects. In contemporary Western society, where the “beasts and gods” between which man was situated for 
Aristotle have long since given way to human-machinic entanglements and human-animal hybrids, it is imperative to 
reassess the knowledge formations to which the end of  man gives rise, and to ask what semi-human, semi-machinic 
assemblages inhabit them (Leslie 1996: 3-13).

It is the contention of  this paper [1] that semi-human circuitries extend beyond formerly unified bodies and 
connect formerly distinct entities. In the section following this introduction, I argue that the end of  man presents 
an opportunity to narrate histories of  entangled circuits bridging human-animal-machinic divides. Buried beneath 
ontological distinctions separating man, machine, and beast, such forgotten histories must be told in ways that 
allow critiques of  anthropocentric linear history. With this, mapping the terrain previously obfuscated by this linear 
historicity becomes possible.

In the third, fourth and fifth sections of  this paper, some such critical mappings are presented. Their common 
theme questions one of  the predominant linear narrative devices to which semi-human, semi-machinic assemblages 
are subject: the narrative of  “progress.” In the third section, I argue that a more richly socially embedded narrative 
is necessary to appraise exactly what it is that constitutes “progress.” Particularly, I highlight the frequent appearance 
of  retardation, delay, and hesitancy within the ostensibly unbroken march of  progress.

In the subsequent fourth and fifth sections, I discuss the machinic side of  such stories. Rather than following 
a trajectory of  linear ascent – say, from less convenient to more convenient, from slower to faster, and so forth – 
machinic histories are likewise histories of  dispersals, hesitations, and bifurcations. What emerges, therefore, are 
multi-faceted histories of  semi-human, semi-machinic circuits, allowing critical engagements with linear historical 
narratives.

2. Circuit Histories

The transcendental condition of  possibility for histories of  circuits is the end of  ‘man’ as an identifiable 
formation of  knowledge. According to Michel Foucault’s study on the Order of  Things, “man” denotes a precisely 
dated formation of  Western knowledge. It is preceded by knowledges based on similitude in the 16th century and 
succeeded in the 20th century by knowledges consisting of  psychoanalysis (the other of  conscious man), ethnology 
(the other of  European man) and literature (the other of  speaking man) (Foucault 1994: 42-44, 373-386). In the early 
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21st century, these three knowledges have in their turn given way to full eclipses of  man at all sides: knowledges 
of  stochastic distributions of  catastrophe and accident; knowledges of  environmental disaster and displacement; 
knowledges of  undecidabilities and indeterminacies (see, for instance, Perrow 1999 or Lawrence and Wiebe 2017). 
Given the uncontrollable proliferation of  the other-than-human, “[i]t is no longer possible to think in our day other 
than in the void left by man’s disappearance” (Foucault 1994: 342).

Foucault thus reveals that “man” had at one point emerged as the condition of  possibility of  Western knowledge. 
By the same token, its role as gateway was bound to be finite. “Man” is not irreplaceable at the heart of  knowledge; 
nor is anthropocentrism unavoidable. It is always already beset by its own dissolution: “at a very deep level, there 
exists a historicity of  man which is itself  its own history but also the radical dispersion that provides a foundation 
for all other histories” (ibid: 370).

The end of  man uncovers this radical dispersion and provides the transcendental condition of  possibility for 
different knowledges (Nietzsche 1989: 162-163). It opens pluralist and non-linear fields of  histories, in contradistinction 
to the monomanic line of  history prevailing as man held sway over Western knowledge formations (Chakrabarty 
2007). Since man is dead – both in the temporal and in the conditional sense – life, labor and language inhabit fields 
of  their own, with efficacies, distributions, and formations of  their own (Latour 1993: 3). What is more, singular 
history gives way to plural histories as the dissolution of  what was formerly “man” lays bare knowledges of  multi-
layered entanglements. Beyond Foucault’s diagnosis, life now comes to be entangled in circuits of  biotechnology and 
bioeconomy; labor comes to be stratified in circuits of  cognitive and replaceable performance; and language scores 
and is scored in circuits of  affect and social mediation (Galloway and Thacker 2007; Lovink 2011).

At this juncture, the historian is called upon to “draw a line around the short-lived facts” which, “[f]or 
contemporaries… hold the fascination of  a fireworks display,” and instead to focus on “[t]he constituent facts,” 
which, “by accumulation and accretion… form the core of  historical growth” (Giedion 1969: 389). Such are the 
constituent facts of  our time that after “man’s” death, writing history means writing history of  the circuits in which 
life, labor and language are now mediated.

In these mediations, machines mingle with “humans” and “animals.” Things have Internet, cameras are 
everywhere, and power is no longer based on macroscopic writing but on microscopic coding (Kittler 1993: 226). 
“In relation to objects like bionic components, one must think not in terms of  essential properties, but in terms of  
design, boundary constraints, rates of  flows, systems logics, costs of  lowering constraints” (Haraway 2016: 30). One 
must write histories, not history, as objects no longer come to be constituted by one sovereign gaze in the cold light 
of  unequivocality. Rather, objects become “constellations,” and as such “readable as sign of  their objectivity… Such 
constellations’ being as writing is the transposition of  that which is subjectively thought and brought together to 
objectivity through language” (Adorno 1975: 167-168). Rather than exhaustively described totalities, objects are now 
constituted in proliferating narratives amid fields of  dispersing knowledges. Histories of  these dispersals must be 
histories of  semi-human, semi-machinic circuits, where it is “not clear who makes and who is made in the relation 
between human and machine” (Haraway 2016: 60).

A recent example for this is “Moore’s Law,” the assertion that the number of  transistors in an integrated circuit 
doubles every other year, and that therefore processor capacity extends by roughly the same factor. When it was 
asserted in 2016 that “Moore’s law has died at the age of  51 after an extended illness,” the underlying narrative was 
one of  human ingenuity and triumphant progress (Bright 2016). In all those years of  hardware development, “life-
changing things [had been] made possible by the reliable, exponential growth in the power of  computer chips over 
the past five decades,” such as “[m]obile apps, video games, spreadsheets, and accurate weather forecasts” (Simonite 
2016).

Underneath this, however, a radical dispersal opens up as Moore’s Law is reconsidered in light of  the end of  
man. For one, technological advancement is here inextricably intertwined with economic calculus. It is thus hardly 
surprising to see that the beginnings of  the end of  Moore’s law are primarily economic in character rather than 
technological: the end of  Moore’s law heralds the end of  profitable processor capacity expansion – not expansion 
per se (Scientific American 2013). What is more, ontological boundaries evaporate in a circuit history reengagement 
with Moore’s Law. For from constituting a history of  ever-more extensive human advancement through technological 
progress, histories of  processing capacity revolve around haphazard guesses, ideological commitment, Cold War 
politics of  superseding socialism, private- and public-sector incentives, and so on (see, for example, Khan, Hounshell 
and Fuchs 2018).

In many ways, such ontological entanglement is not a new situation. Throughout “the traditions of  ‘Western’ 
science and politics… the relation between organism and machine has been a border war” (Haraway 2016: 7). Much 
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of  the critical edge of  circuit histories arises from this conflict. Politics has always taken its place at this border where 
“[n]ature and culture are reworked” (ibid: 9), mixing and mingling to form “quasi-subjects” and “quasi-objects” 
equally as “unstable and hazardous” as “quite real” (Latour 1993: 89). As early as Marx, narrating history guided 
by a notion of  “man’s self-creation through labor” with an emphasis on the “historical process” by which “man” 
comes to constitute itself  through natural and machinic circuits had come with a sharpened analytical eye for the 
political conflicts shaping the contested identities of  man, nature, and machine (Rockmore 2002: 192). “For Marx, 
… humans and machines are continuous forces” (Wendling 2009: 118). On the one hand, “[i] n the historical and 
genealogical account Marx gives of  machines, he shows that they are frozen labor of  the past, and thus human and 
very political in content”. Simultaneously, however, “humans, when portrayed in energetic terms, are machine-like” 
(ibid, 118-119). Circuit histories thus uncover the mixing and mingling of  human and machinic ontologies, and the 
concomitant conflicts and losses buried underneath triumphant narratives of  human progress and enlightenment. By 
traversing narratively constructed and upheld ontological boundaries, circuit histories show that the conflicts, losses, 
and horrors of  history undermine the very boundaries they constantly re-erect to prevent being seen (Adorno 1975: 
202-203).

3. Social Circuit Histories

The constituent facts of  today, then, point to writing circuit histories rather than human history. Writing such 
circuit histories requires, first and foremost, assaying the canon of  linear history seemingly removed from human 
intervention, and restoring the radical dispersal of  constituent facts buried under the corpse of  “man.” Above all, 
an intervention is called for when it comes to the history of  “technological progress.” This is particularly necessary 
in the second decade of  the twenty-first century, as contemporary “machines have made thoroughly ambiguous the 
difference between natural and artificial, mind and body, self-developing and externally designed, and many other 
distinctions that used to apply to organisms and machines” (Haraway 2016: 11).

Here in particular, standard historicity based on the “progress” paradigm ignores that histories are nonlinear and 
entangled, and that “invention,” “improvement” and “innovation” never come without social context. Identifying 
and discussing technological artifacts as steps in an evolutionary paradigm of  progress and amelioration almost 
inevitably naturalizes the social mediation of  technological developments. At a time when “[o]ur machines are 
disturbingly lively, and we ourselves frighteningly inert” (Haraway 2016: 11), specters of  progress present humanity 
either as enlightened helmsman or as victim of  anonymous processes. Both of  these narratives ignore the social 
nature of  what they present as an irreversible development of  means and modes of  production. On the one hand, 
presenting fields of  exemplary progress such as Artificial Intelligence as a result merely of  human perfectibility and 
ingenuity conveniently forgets that machinic histories have rules of  their own and form fields of  dispersion of  their 
own. The system of  machinic objects contains complexities and spillovers, bleedthroughs and externalities. “Artificial 
Intelligence” in particular spans a wide field where the androids of  corporate capital and state warfare dream of  
electric surveillance and displacement of  labor with the same intensity with which they wage war against one another. 
Ignoring the constraints to which any algorithm is subject in a Gödelian universe, such fever dreams are predicted 
upon a “mystique of  information that makes basic intellectual discriminations between data, knowledge, judgment, 
imagination, insight, and wisdom impossible” (Roszak 1994: xix). Papering over any misalignment, setback, or 
conflict, “Artificial Intelligence” embodies “progress” like no other paradigm in the early 21st century.

On the other hand, humans are not mere electric sheep in the face of  machinic menace and mayhem. This, 
too, is too simplistic a narrative. It particularly – and quite conveniently – forgets that technological development is 
hardly foreign to “a context that includes relative prices, regulatory and other institutional factors and, obviously, the 
perceived market potential of  the innovations concerned” (Perez 2010: 186). The effects of  the improvement of  
processing speed encapsulated in Moore’s Law, for instance, are clearly socially stratified. Consider, for example, the 
replacement of  workers in the fast food industry with automated check-out points – while, simultaneously, outsourced 
customer service presents consistent employment growth predicated upon the very same human interaction which 
fast food chains evidently no longer require (Bureau of  Labor Statistics 2018). Such differentiated effects, too, must 
be described in detail: gains for some, losses for others.

Consequently, writing circuit histories must here primarily be critique. Any time differentiated accounts of  social 
gain and loss are papered over by progress narratives, social phenomena are reified into natural phenomena. Everyday 
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life, labor and language thus come to be subjected to a technological paradigm elevated beyond question (Lefebvre 
2002/1961: 74-78). Moreover, this self-evident paradigm is inherently totalizing (Siegel 2008: 27). Empirical fields 
of  pluralist histories thus come to be lumped into a natural history of  ever better and ever more comprehensive 
technocratic solutions to social problems (Ellul 1964: 116-133).

Thus, writing circuit histories means first and foremost engaging in a sustained critique uncovering the social 
cost of  so-called “progress” (Haraway 2016: 37). It should hardly require pointing out – but all too frequently does 
– that not all new technologies are also improvements. The notion of  “progress,” however, removes the means 
to properly evaluate new tools and gadgets (Siegel 2008: 18). Moreover, it precludes the recognition of  legitimate 
critiques of  the social effects of  the introduction of  new technologies. As the fate of  the “Luddites” in particular 
shows, any social movement opposing even parts of  technological implementation is susceptible to being vilified – or 
worse, ignored – by narratives of  “progress:”

No one alive today remembers firsthand the trauma that we call the first Industrial Revolution… The inherited accounts of 
this period were formulated by and large in response to the dramatic actions of those who fought for their survival against 
this progress. They constituted a post hoc effort to deny the legitimacy and rationality of such opposition… The Luddites… 
did not believe in technological progress, nor could they have; the alien idea was invented after them, to try to prevent their 
recurrence (Noble 1993: 4). 

Even beyond social cost, and only looking at the – as it were – positive side of  a “progress”’ balance sheet, one 
will not uncover linear ascent. Taking a closer look at the actual histories of  “progress” rather invites comparison to 
the succession of  paradigms in Thomas Kuhn’s study of  science (Wojick 1979: 238). For Kuhn (2012/1962), scientific 
progress occurs by briefly punctuating long periods of  unquestioned scientific normality with rapid overhauls of  the 
paradigms upon which this scientific normality had been predicated. In the implementation of  scientific progress into 
everyday engineering, “received evaluation policy … plays a role analogous to that played by an accepted paradigm 
in an area of  scientific explanation” (Wojick 1979: 244). When a new technology arises which “enables us to see 
that our standard procedures do not evaluate all factors correctly,” the new paradigm “may lie outside the group or 
discipline in charge,” or worse, “the evidence for anomaly or misevaluation may be tentative, controversial, or merely 
qualitative” (ibid, 245). For example, one of  the results of  the development of  Artificial Intelligence seems not so 
much to have been the success or failure of  specific machinic entities, but that it put established measurements of  
“intelligence” in question. Particularly, failures of  the so-called Turing test, where human operators are supposed to 
find out whether they are conversing with a machine or a human, have raised doubts regarding methodologies of  
measuring intelligence (Batson 2014).

Yet, as “progress” marches on, advocates will split from conservatives, and initially unclear positions on both 
sides will result in conflict. Once this conflict goes public, progressive “popularizers” split from conservative 
“technologists” (Wojick 1979: 246). Here, too, Artificial Intelligence provides ample examples for both sides of  this 
debate. For instance, the recent feud between Tesla CEO Elon Musk demanding further government regulations 
for the use of  Artificial Intelligence, and Facebook CEO Mark Zuckerberg emphasizing market-based innovation, 
exemplifies that conflict between the popularizers and technologists arise in any field of  technologically accentuated 
development (Solon 2017).

The “technologists” frequently have the upper hand initially since “the lay public may not appreciate the 
differences between the crude new evaluation policy and the well-articulated established policy” (Wojick 1979: 246). 
Consequently, “progress” narratives tend to prevail with ill-informed audiences. The adjustment period, in turn, will 
be publicly interpreted as confusion or even “steps back;” particularly if  it brings grave social consequences (Noble 
1993: 5-6). In the end, however, “[t]he confusion cannot last,” and the new policy prevails (Wojick 1979: 259). Its 
social consequences are then pushed aside by various non-violent and violent means until the mere idea of  opposing 
the new paradigm comes to be seen as irrational or deluded (Noble 1993: 16-17). Artificial Intelligence has not 
reached this point yet, but already its proponents accuse its opponents of  obscurantism (Walker 2017). Likewise, 
critical assessments of  Moore’s Law, particularly those showing its economic rather than technological nature, have 
historically been met with hostility (Ceruzzi 2005: 590).

Even in a highly idealized form, then, histories of  socially mediated technological dispersal are histories of  
confusion, misalignment, personal conflict, and ill-informed intervention rather than linear ascending pathways. 
Even in a petri dish, progress is political. Beyond such idealized circumstances, moreover, histories of  technological 
dispersal will have to take economic and political agendas into account, as well as ideological and plain old pork barrel 
politics (Kellner 1992: 187). Messy though they are, these are nevertheless the constituent facts of  techno-social 
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“progress.”

4. Machinic Circuit Histories

Just as circuit histories uncover that each individual affected by “progress” is a history unto itself, thus humanizing 
the machinic, so they also bring micronarratives into play by which the machinic intersects with the social. A history 
of  the entanglement of  hitherto “human” and hitherto “machinic” circuits cannot therefore be content with just 
the critique of  linear history. It must also pay close attention to the dynamics within the circuits it describes, and 
particularly to those within the machinic realm itself, overdetermining the conditions of  entanglement of  social and 
technological realms (Kellner 1992: 178). Reconsidering their object, circuit histories reject sweeping macronarratives 
in favor of  microlevel precision. Just as “progress” history dissolved into small-scale narration of  knowledge politics, 
so formations like “Artificial Intelligence” dissolve into constituent gestures, each of  which has histories of  its own, 
to be narrated on the micro-scale of  its dispersal.

Such micronarratives augment, situate, and embed macronarratives as constituent facts disperse linear 
monomania. Thus, once again, narrating an exemplary field of  such dispersed circuit histories constitutes a critique 
of  an all-too-linear knowledge formation where hitherto the narrative of  “progress” held sway. At the same time, 
micronarratives of  machinic histories go against the grain of  limited econocentric readings of  history, focusing 
instead on machinic momentum. In this way, they round out the above socially embedded histories of  machine 
development by adding a machinically embedded field of  histories of  social development.

The particular example discussed in this section demonstrates, moreover, the radical dispersal at work in the 
array of  machinic figurations which can be uncovered beneath “progress.” Exemplifying that dispersal lies not just 
underneath the linear timeline of  progress, but also the unified object of  “Artificial Intelligence,” this section focuses 
on the histories of  “loading.” Big-picture items such as the question of  machinic consciousness easily obfuscate that 
such consciousness, even if  it were an attainable reality, would still consist of  myriad tiny gestures. One of  these is 
inevitably the question of  loading – consciousness, after all, requires extensive initialization in human circuits as well. 
Loading denotes the act of  initializing all values of  a program to be executed: intermediary storage positions, GOTO 
loops, initial values (including terminal-based input), and of  course the program and its associated subroutines 
themselves. Thus, loading is the process by which a Turing machine’s initial 0-state is set up which is necessary for 
algorithm execution (Denning, Dennis and Qualitz 1978: 483).

Importantly, this refers both to the initialization of  hardware and that of  a coded routine. In FORTRAN, for 
example, “[t]he code that is to be executed must first be loaded into memory using the LOAD routine. This code 
to be executed is assembled and linked into an assemblage the LOAD routine will handle” (Kettleborough 1985: 
184). Further down coded hierarchy, opcode and the parser themselves have to be loaded; a process repeated every 
time computing hardware boots up und streams of  electric pulses manifest to UEFI, kernel, operating system, and 
eventually applications.

As is immediately evident, the multifaceted taxonomy of  loading suggests multiple histories based on a variety 
of  definitions. Still, an approximation to the concept is possible. In both the coded and the hardware version, 
loading is distinct from compiling, which generates the structure by which loading occurs (Backus et al 1957: 26-27). 
Likewise, it is distinct from the manual entry of  initial values, to which it rather assigns intermediary storage space 
as structured by the compiler (Booth and Booth 1965: 222-223). Loading is somewhat closer to gestures such as 
memory dumps, where values are retrieved from storage locations and loaded into the present routine (IBM 1974: 
116-119). Likewise, loading bears some kinship with diagnostics, where value initialization is implemented for testing 
purposes (Kettleborough 1985: 62-64).

Loading is a particularly good example for a critique engendered by writing circuit histories because of  the 
monolithic and teleological character of  its prevailing narrative. In 21st-century program initialization, loading is 
essentially invisible. This follows partly from processing speed, closely aligned with aspects of  commercialized 
convenience. In the graphic interface representation upon which the vast majority of  contemporary operating 
systems are predicated, loading is at best a nuisance papered over by introductory graphics. At worst, it constitutes a 
fatal problem, as was the case recently with LG Nexus devices and their Oreo update.[2]

In the linear teleology of  “progress,” the disappearance of  loading is thus an ideal end state, of  which all 
previous loading routines are imperfect approximations. From its inception, graphics interface software was written 
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with the aim that it “should be easy to use but at the same time provide as many useful features as possible,” including 
compatibility in output with “lower quality devices” - a feat direly needed as state-of-the-art interfaces remained 
plagued by slow speeds and thus long loading times (Sutcliffe 1980: 52). What relief, then, that Windows 10 which 
already “came with no shortage of  performance improvements” presents as its “neatest” feature “its fast booting 
times” (Ravenscraft 2015)! Likewise, reducing speed constitutes progress in hardware processing capacities to such 
an extent that the ideology of  Moore’s law gave way to “Meltdown” and “Spectre” in January 2018, two processor 
vulnerabilities exploiting a time-saving technique used in bootloading contemporary operating systems.

Yet, the histories of  semi-machinic circuits inhabiting the terrain between compiling, retrieving, dumping, and 
testing hardly give credence to a narrative of  ever better hidden loading procedures resulting in ever-improving speed 
and ever more convenience. Rather, circuit histories trace a dispersion of  gestures resulting in histories of  displaced 
human-machinic interaction, particularly centered around power differentials encoded in hardware and software 
access levels.

In 1957’s TYDAC, for instance, loading was a largely hands-on affair. It was initialized, first, by a direct and 
manual choice between different inputs in the following command:

60 SELECT x

where “x” is a selection from the set of  possible input channels: 1 addresses the Card Reader, 11 does so for 
Tape unit 1, 12 for Tape unit 2, 13 for Tape unit 3, and 14 for Tape unit 4. After initializing this choice, a second 
command sets in motion the actual loading process:

61 READ 1000,1

where 1000 is the address into which the tape’s content is to be read, and 1 is the index register to be used for 
the operation (McCracken 1957: 220).

The constituent facts contained in this initial loading gesture are those generally found throughout later versions 
of  loading as well: the choice of  input from which loading occurs; setting the storage addresses in which data is 
received; temporary storage; the material act of  data transfer itself. Three aspects of  this are nevertheless remarkable. 
The first of  these is that setting the temporary storage address is not done by a compiler routine but is set manually 
at initializing the loading command. Here, encoded access is total inasmuch as the code addresses all input channels 
equally. Secondly, however, to a significant extent this is due to limitations in loading structure. In TYDAC, as in late-
1950s machines more generally, loading primarily operates by feeding card stacks (or tape) into a reader. Automating 
this, in turn, still presupposes direct interaction, as the user “must somehow get the first card in, which must have on 
it a program which will load the remaining cards” (McCracken 1957: 142-143).

Thirdly, the choice of  input device is not directly part of  the loading gesture. This is particularly intriguing here 
since it directly integrates not just input, but also output into loading gestures. The command selecting inputs

60 SELECT x

addresses two other options as well; both of  which are outputs. Entering “2” selects the Card punch, while “3” 
addresses the Typewriter (McCracken 1957: 220).

Contrary to expectations of  “progress,” one thus finds more integration and greater degrees of  user interaction 
here than one does in later incarnations of  loading routines. Particularly once loading – both booting for operating 
systems and loading for individual programs – came to be hidden behind graphic interfaces, such choice and 
interaction all but evaporated.[3]

Thus, for example, 1981’s Sinclair ZX81 exclusively features a tape loading routine. Furthermore, apart from 
winding the tape to the program’s starting point and connecting the sockets, manual user interaction with the 
hardware disappears behind a graphic veil. So does most of  the coding. Typing LOAD, without any qualifiers as 
regards source or final location, starts the tape’s input, whose only immediate hardware stipulation to be heeded by 
the user is that the tape be regulated tonally: “maximum treble, minimum bass.” Once loading is initiated, “you will 
see various fairly even patterns on the screen, and then suddenly a rapidly moving pattern of  horizontal bars… This 
is your program. After loading, the screen will clear with a 0/0 report code” (Norman 1980: 58).
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User interaction with the loading process is reduced to setting up timings and time stamps on the tape in 
question and winding the tape up to the exact starting point (Norman 1980: 57-58). The tape’s tonal regulation 
further qualifies the reference frames of  intelligibility for the magnetic pulses to be derived from the tape (ibid). 
Everything beyond this threshold is devoid of  direct interaction and encoded to prevent access: the “various fairly 
even patterns” are the tape’s sounds while they still remain just unrecognized sounds, while the subsequent “rapidly 
moving bars” represent those same sounds, transformed once a threshold of  intelligibility is crossed – once the 
program is identified as a program.

The user thus chooses a fixed program, to be relocated from one fixed location on tape to another in main device 
storage. Hiding the realities of  loading behind this veil of  seeming transparency is, not least, commercially relevant, 
as only the reification of  input and output allows its packaging in “programs” and – eventually – “applications.” 
Were choices left to the user, such regulation of  choice and creativity to that between various types of  commercially 
available products would be threatened. Yet what is hidden here exceeds such immediately commercial considerations.

Rather, commercial reification at play here is part of  a larger displacement. Up to a certain point, the initial 
sound read from ZX81’s tape is indistinguishable from noise. It is only when that point is reached and its threshold 
crossed that the “moving bars” retroactively establish the intelligibility of  the previous patterns and the program’s 
phantasmagoric objectivity arises. Code, as an emergent quality, encodes its own intelligibility threshold. In turn, this 
threshold delineates access. On the one hand, user interaction must be denied initially as the very intelligibility of  
user interaction must first be loaded. On the other hand, cutting off  user access in this way prevents any program 
other than the present one from being initialized. Commercial reproduction and the delineation of  intelligibility go 
hand in hand.

As regards the coded emergence of  code itself, consider this description of  loading hardware from the 1960s:

…a group of order digits is just appearing at the digit output of M[emory] and… the binary element B is set so that the gate 
g1 is open and the train of 32 clock pulses passes through to C[ontrol] R[egister]. These pulses cause the contents of C.R. 
to shift progressively to the right and, at each stage, one of the incident digits from M is absorbed. When the whole 32 have 
appeared these will be stored in C.R. and the memory emits an operation complete pulse which is incident upon the right-
hand input of the binary element and causes a state change so that g1 closes… (Booth and Booth 1965: 35). 

Here, electromechanical input operates directly on the hardware level. The opening of  a gate is followed by 
clock pulses regulating the main transmission of  actual pulses (“incident digits”) from a binary input source to a 
register storage where storage is implemented via right shift. In turn, this is followed by a pulse indicating the end of  
transmission and thus closing the gate.

Here, it is particularly remarkable that the incident digits – that is, the actual values to be loaded – remain 
secondary to the transmission of  clock pulses. To the computing device, the important part of  any data transmission 
– including loading routines – is the synchronization of  clock pulses between peripheral and mainframe sectors 
(Phister 1960: 175-178). This is congruent with the characteristics of  a Turing machine. After all, the origin of  Turing 
machines – quite removed from their contemporary usage – is the establishment of  a mathematical boundary of  
computability in a thought experiment (Denning, Dennis and Qualitz 1978: 489). From the inception of  computing, 
“content” had been secondary, to the point of  irrelevance. One of  the histories of  loading, then, is the history of  
an inertia, as this particular formation remained at the center of  loading gestures ever since. “Progress” is notably 
absent in this regard.

A particularly good example of  this is the loading gesture in 1967’s PDP-8/I. Once tape loading was initialized, 
establishing communication between DECtape and the PDP-8/I main device consisted, firstly, of  setting error flags 
synchronizing the tape’s reading sequence with the main device’s status register (Digital Equipment Corporation 
1967: 341).[4] A second element at the heart of  PDP-8/I’s tape loading process was the synchronization of  tape 
speed with that of  the main device. This is why “timing and mark channels are recorded prior to all normal data 
reading and writing on the information channels,” and indeed is why, as the user is brusquely informed, “[s]oftware 
supplied with DECtape allows writing for fixed block lengths only” (ibid: 184, 189).

Here, too, technical and commercial quasi-necessity go hand in hand. Removing content from the equation 
of  computing – both literally and figuratively – serves to consolidate the process of  loading itself. Since loading is 
exclusively about synchronization, the device from which data is loaded and the mainframe upon which data is to 
be stored must be fundamentally compatible. The easiest way to establish such compatibility, of  course, is to base 
the process of  loading exclusively upon proprietary hardware. By the same token, the operational establishment 
of  synchronization functions most easily if  it is automated – and that is, if  user access is removed in the process 
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of  loading itself. Thus, DECtape only works with DEC devices and those devices for which DEC has established 
compatibility, and the user of  a ZX81 will try in vain to read a data tape from the TYDAC era into her device. Nor, 
on the other hand, does this commercial encoding follow directly from machinic synchronization: it is entirely 
conceivable, absent commercial imperatives, that device synchronization can bridge the divides of  proprietary 
hardware. Indeed, it frequently does – except when it is prohibited from doing so.

5. Two Further Threads

A third history of  loading is that of  a transition from physical to logical tape input and back (Digital Equipment 
Corporation 1967: 185-188). This physical/logical differentiation is encoded in an exemplary fashion in FORTRAN. 
Reminiscent of  TYDAC, FORTRAN’s READ is a general input command following up on another command 
structuring the way data is received. In FORTRAN’s case, this is accomplished by a FORMAT code (Backus et al 
1957: 26). As in TYDAC, this FORMAT instruction contains a choice of  input type. Unlike in TYDAC, it then 
specifies the exact floating-point numbering format for data storage (ibid: 27). It is noteworthy that FORTRAN also 
contains output structuring code, such as carriage control characters: “blank” for a single space, “0” for a double 
space, and so on (ibid: 29). With these, input and output are on their way to becoming internal parts of  the program 
itself. This step is ambiguous: on the one hand, it sets up the path towards the mystifying loading screen implemented 
in Sinclair’s ZX81 by internalizing hardware access into its encoding. In doing so, however, FORTRAN also allowed 
more direct access to setting up the way data is received. The interface is encoded, but not entirely hidden.

With this, a bifurcation occurs in the histories of  loading. PDP-8/I’s and FORTRAN’s differentiation of  
pure input from structured input, which is replicated in ZX81’s difference between pure sound and intelligible 
sound recognized as input, delineates a distinction of  loading within a graphic interface – such as a present-day 
operating system – from loading that operating system itself. Loading is now increasingly split between bootloading 
and program loading. Where TYDAC’s loading procedure offered direct addressing of  hardware, and even ZX81’s 
graphic encoding left some hardware elements intact, this split now removes those last traces. Some twenty years after 
PDP-8/I, consequently, C64’s LOAD is a high-level command setting a subroutine in motion whereby “consecutive 
data bytes” are moved “from input device to Commodore 64 memory” (Philipps, Nath and Silveria 1984: 73). At that 
stage, loading exclusively refers to program loading and is entirely distinct from booting.

With this displacement of  hardware access, two secondary access levels are distinguished: loading in the booting 
sense now comes to be associated with external storage media, while loading in the program loading sense is situated 
within the main device. This makes sense because bootloading installs the first layer of  hardware obfuscation, 
the operating system. On its basis, in turn, individual loading routines can encode and effect the reification of  
“applications.” An exemplary manifestation can be found in IBM’s System/360 family, about ten years after the PDP-
8/I, where loading is transformed into an internal function within assembly routines. It no longer refers to input 
loading from tape or drum, but rather loads index registers (Opler 1966: 39).

Nevertheless, hardware obfuscation or displacement remains negotiated and uneasy. Once completely 
internalized, the programmed loading gesture uneasily re-incorporates direct input and output accessing in the 80386 
processor family of  the late 1980s. Here, loading oscillates between operating system and application in the “Input 
from Port” command. A return to TYDAC’s choice of  input seems to be preserved, as it is possible to “access any 
port from 0 to 65535 by placing the port number in the DX register and using an IN instruction with DX as the 
second parameter” (Intel Corporation 1987: 17/65). This access remains at the processor level, however, and does 
not concern the operating system itself.

What is more, a parallel to ZX81’s loading screen returns, removing user access even at the processor level, 
albeit in a different way. While the 80386 instructions seem to restore input/output port choice to the user, direct 
addressing of  peripheral devices as in TYDAC is nevertheless precluded by access constraints. In 80386 opcode, 
an input/output access command must come from a specific privilege level, as “[a]ny attempt by a less privileged 
procedure to use a sensitive instruction results in a general protection exception” (Intel Corporation 1987: 8/5).

A fourth history of  loading emerges here. Thus far, direct loading or bootloading and indirect loading or 
application loading have been distinguished as two levels. With the installation of  opcode privilege, a third layer of  
encoding emerges. Moving from direct loading to this new level, the scope of  loading expands markedly: it includes 
in the 80386 family the loading of  effective addresses (Intel Corporation 1987: 17/91) as well as status words 
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(ibid: 17/99) and strings (ibid: 17/102-103). With the internalization of  loading effective addresses in particular, 
the mechanical act of  winding up the memory tape to its starting point, a core element of  early loading, now 
becomes internal to the program. Synchronization between mainframe and periphery takes on an expanded form, 
now established not in the bootloading process, but in the program’s own opcode. In turn, this is implemented by the 
assembler, converting relative addresses to absolute addresses and thus ensuring the synchronization of  application 
and operating system as well as mainframe and periphery. The now doubly encoded loading routine is thus further 
removed from the user still, and an equivalent of  ZX81’s loading screen or the 80386’s privilege level architecture 
removes access entirely.

Even before the 80386 family emerges, IBM’s System/360 family implements this further displacement in its 
assembler routines (IBM 1974: 20). At the beginning of  each program to be executed, a USING command sets up 
the base register, tying the program’s internal relative addresses to an absolute position in the device’s memory space 
(ibid: 51). Subsequently, a BALR command stands “at the beginning of  a program… getting the address of  the next 
sequential operation from the current program status word, no matter where the program may have been located” 
(ibid: 24). Beyond allowing relative addressing within the program, this also reifies the program as such by establishing 
dynamic anchoring of  programs within absolute memory space. Loading is no longer a universal command to 
synchronize any device with its input/output ports and thus, secondarily, to load any content. It has rather come to 
be part of  a specific routine, loading specific content for specific purposes. At the same time, the USING command 
removes the choice of  where to store a program in absolute memory space from the user and implements it in the 
assembler. Removed from direct access by the layers of  “application,” “assembler,” and “operating system,” the 
user stares at the equivalent of  ZX81’s loading screen until something happens. The “application” can freely be 
implemented as a commercial entity.

It is hardly surprising that this development culminates with a second-order encoding of  loading itself. In 
System/360, just as in ZX81, loading becomes a predefined routine, available to the assembly coder – never mind 
the end user – merely as a pre-structured macro (IBM 1974: 123). Entering LOAD in the assembler’s code “obtain[s] 
a full word (four bytes) from storage at the effective address specified, and place[s] the word in the general register 
indicated” (ibid: 30). Likewise, a multi-LOAD variation of  the same macro “begins loading fullwords from the 
specified storage location. The first word goes into the first-named register. Successive fullwords go into higher-
numbered registers until the second-named register has been loaded” (ibid: 40).

The displacement of  the user from direct access to hardware and ultimately from loading itself  is thus complete. 
In 1988’s APL2 language, to use just one example, loading consists in defining a virtual vector, such as an array, in 
which items are to be stored; the definition of  a relative storage address where they are to be stored; and a definition 
of  the “stride”, ie, the virtual distance between subsequent elements (Brown, Pakin and Polivka 1988: 350). The 
loading routine is here still initiated directly by the user, and the storage address – albeit not the absolute one – is still 
set manually. Yet, storage formats are predefined and the assembly of  this command is as much out of  the hands of  
the user as the definition of  an array is out of  those of  a 21st-century “developer” in contemporary front-end “web 
design.”

6. Conclusion

The space of  knowledges left in the wake of  man’s end opens avenues of  critical examination. Circuit histories 
exploring these avenues, first and foremost, uncover dispersed elements hitherto buried underneath linear histories 
of  “progress.” By the same token, they show that seemingly monolithic entities such as Moore’s Law or Artificial 
Intelligence consist of  myriad smaller formations with their own histories, like those of  loading and initializing on the 
machinic end; quarrels between CEOs and differentiation between strata of  workers on the human end. Underneath 
the social history of  human innovation and ingenuity, circuit histories uncover subterranean pork barrel politics 
and knowledge regimes as well as hesitation and retardation in assaying and applying innovation. The partly social, 
partly machinic formations of  “progress” thus remain embedded in a messy and complex, multidimensional reality 
without fully realizable teleology. Taking “man” out of  historical narratives allows taking stock of  displacement 
rather than teleology. Quasi-laws like Moore’s render invisible the economic and cultural factors leading to their 
seeming certitude. Artificial Intelligence occludes a vast field of  conflicting interests and uncertain applications, as 
well as differentiated gain and loss. Both paper over human experience.
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By the same token, circuit histories of  machinic formations show that social effects arise as much from 
machinic formations as vice versa. Power differentials are encoded and decoded in series of  hardware and software 
displacements uncovered only when the narrative history of  progress gives way to narratives emphasizing histories 
of  dispersal. What is encoded in the histories of  code is not a teleological move towards ever more convenience 
and transparency in service of  users. Rather, ever increasing layers of  access removal from users encode reifications 
of  operating systems, assemblers, and applications. In turn, this feeds back to commercial forces. Particularly the 
development of  internalized memory address initialization culminating in System/360’s USING command allows 
the reification of  programs as products. Such “applications” can then be anchored anywhere within absolute memory 
ranges. Variability of  this kind allows copying and selling the commercial application en masse and independent of  
the device in question. In turn, the latter can be reified to “operating systems.” On either level, this only works if  
loading is further reified. In this circular movement feeding back into itself, removing user access to bootloading 
routines allows a reification of  operating systems, along with applications, as self-contained economic entities.

At the same time, it is important to remember that encoded social and economic imperatives remain subject 
to the machinic dynamics of  both code and hardware. After all, the shift from System/360’s loading routine to that 
of  the 80386 family does re-enable some direct access of  ports. On the other hand, this restored degree of  choice 
remains within the assembly level, removed from those users whose access or knowledge does not extend that far. 
Even so, it is further removed still by a second-order imposition of  privilege levels within the 80386 architecture. 
As part of  such movements from the machinic to the social and back, too, the mass marketing of  programs and 
“applications” emerges from the architecture of  loading routines as one possibility of  reifying the transition from 
relative to absolute memory indexing.

What emerges, then, is a complicated picture in which neither economic nor technological rationalities hold 
sway entirely, and in which messy human politics are just as effective in encoding, recoding and decoding the things 
to come as are machinic assemblages. There is no linear “progress” in the politics of  social interactions, because the 
perils and platitudes of  scientific popularization and engineering applications, along with market miscalculations, 
personality clashes, and coded access politics prevent or displace invention and innovation just as much as they 
further it. Nor is there “progress” in the trajectories of  machinic lineage, as machinic assemblies are constituted more 
by lateral movements, dispersals, and displacements, than by innovative amelioration.

What emerges, in other words, are fields of  dispersals instead of  linear narratives, and crisscrossing ontologies 
instead of  “man’s” dominion over the sequence of  time. Writing circuit histories gives voice to such dispersals, en 
route to critical reappraisals of  man-machines, their natures, and their constellations. In the present state of  anxious 
uncertainty, unsettling all-too-easy narratives can thus contribute to avoiding rash judgments. Once real existing 
non-progress is exposed, the notion might lose some of  its status as panacea for the ills of  the world. At the same 
time, the real effects papered over by its narrative triumphalism, from circuit access exclusion to joblessness, can 
be brought to light. Particularly, circuit histories expose the neutrality of  code as a myth, arming critical analyses of  
power with further tools to decode the minutiae of  social silicone and machine marketing.

Endnotes

1. It could not have been written without the generous 
inspiration and encouragement I received from Eoin 
Murphy. To him, Tim Luke, and the anonymous 
reviewer of this paper I owe a debt of gratitude.

2. This update was halted after it emerged that it damaged 
some phones’ booting procedures to such an extent that 
they effectively became unusable. At the time of writing 
this, the exact cause(s) appear(s) to be a bit of a mystery 
still, but it seems that random forced reboots, battery 
problems, as well as memory issues were to blame.

3. It is intriguing that TYDAC, with its strong focus 

on the matter of hardware, was in fact a “mythical 
computer,” the “TYpical Digital Automatic 
Computer… intended primarily as an aid to learning” 
(McCracken 1957: v). The history of actually existing 
computing begins with many such ficitious entities: 
neither TYDAC nor the Analytical Engine were ever 
materially implemented, while Alan Turing’s initial 
concept of a Turing machine was a thought experiment 
designed to address one of Hilbert’s problems. Here, 
too, social factors are important, as a significant part of 
the secrecy surrounding Turing’s work in particular is 
related to the Cold War. While this matter – or rather, 
the absence thereof – remains beyond the scope of the 
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present paper, the ghostly character of early computing 
hardware in particular certainly merits more attention.

4. To be precise, this consisted of two actions: the DTCA 
command, clearing the status register of the main device, 
and the DTXA command, setting the status register 
according to the reading from the DECtape control 
flag. Here, one could branch off an exploration of the 
microhistories of synchronization, from tape and drum 
memory time stamps to present-day latency reduction.
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